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Magnetic fluids are excellent candidates for several important research fields including energy harvesting, biomedical applications,
soft robotics and exploration. However, notwithstanding relevant advancements such as shape reconfigurability, that have been demon-
strated, there is no evidence for their computing capability, including the emulation of synaptic functions, which requires complex
non-linear dynamics. Here, we experimentally demonstrate that a Fe3O4 water-based Ferrofluid (FF) can perform electrical ana-
logue computing and be programmed using quasi DC signals and read at Radio Frequency (RF) mode. We have observed features in
all respects attributable to a memristive behaviour, featuring both short and long-term information storage capacity and plasticity.
The colloid was capable of classifying digits of a 8× 8 pixel dataset using a custom in-memory signal processing scheme, and through
Physical Reservoir Computing (PRC) by training a readout layer. These findings demonstrate the feasibility of in-memory comput-
ing using an amorphous FF system in a liquid aggregation state. This work poses the basis for the exploitation of a FF colloid as
both an in-memory computing device and as a full-electric liquid computer thanks to its fluidity and the reported complex dynamics,
via probing read-out and programming ports.

1 Introduction

As a part of the largest international effort underway to explore alternative computing methods called
unconventional computing [1, 2], there is a consolidated trend in the research on devices, materials, and
in natural processes, to find an implicit exhibition of computing features, even beyond solid aggrega-
tion state. The idea of computing with liquids attracted engineers and mathematicians since the early
1900s [3], but later prototypes of liquid computers were mostly based on hydraulic, reaction-diffusion,
and fluidic principles [4], with the drawback of requiring either a continuous movement of the liquid, or a
”reloading” operation after its potential/chemical energy was consumed.
Only recently, liquid and colloidal systems have been subject to attention for mimicking the ions mov-
ing in the human brain through embedding aqueous solutions in gel or solid-state scaffolds [5]. Being
applicable to soft robotics [6], energy harvesting [7], and computation in general [8], magnetic fluids are
always of great research interest (Supplementary Sec. S1). Particularly, ferrofluids (FFs) are mixtures
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in which nanometric-size dispersed insoluble particles are suspended throughout a solvent, the particles
being typically superparamagnetic, giving rise to interesting collective behaviour. One of the most in-
teresting properties of colloids, is their ability of being potentially fault tolerant, resilient and robust to
failures of various nature. Colloids, are excellent examples of how matter can self organise, with their
nanoparticles that form bulk phases such as liquid and crystals and provide collective behaviour not seen
at atomic scale [9]. A potential of FF in computing, massive-parallel information processing, sensing,
and energy harvesting regardless of their shape has not been addressed before, notwithstanding first re-
ports on their shape reconfiguration are already available [10]. Here, we demonstrate that a volume of
a superparamagnetic FF can be interchangeably assigned to memory and computing roles. This prop-
erty is consistent with the rising paradigm of in-memory computing, which aims at mitigating processor-
memory data transfer bottleneck by embedding computation in memory [11, 12, 13, 14]. We show that a
FF can run digit classification, and be considered as a liquid in-memory computing device in a two port
set-up. Moreover, as a natural consequence of its complex dynamics combined to its amorphous nature
and fluidity, a FF reservoir can be considered equivalent to a physical in-memory computer, an ensemble
of computing nodes shaped by the number of physical ports for programming and read-out. In-memory
computing paradigm is currently applied to solid state computer architectures, and it is implemented us-
ing digital computer logic and charge carrier-based memories or by integrating specific resistance-based
memristive devices on it [14]. In-memory computing using memristive devices is always obtained in con-
juction with spiking and non-spiking neural networks routed in solid state circuits. These solid-state de-
vices are typically integrated in geometrically arranged cross-bars to implement a wide variety of compu-
tation primitives such as non-stateful/stateful logics and matrix multiplication, fundamental elements to
map computer instructions directly where information storage occurs [14]. Cross-bars of analog devices
are also feasible, since they can be interfaced with solid-state logics using Analog-to-Digital and Digital-
to-Analogue converters [15]. On the other hand, a FF constitutes itself a network of in-memory com-
puting elements, the nanoparticles, that can be arbitrarily probed by programming and read-out ports
thanks to its fluidity. Further, nanoparticles are subject to electromagnetic forces that can alter their lo-
cation, speed magnitude and direction, therefore modifying the connection scheme of said network. In
solid-state systems, a digit classification task is considered as a high-level application, and ad-hoc archi-
tectures are typically based on the co-design of devices with associated neural network, that can include
multiple layers.
Here, we demonstrate that the FF is an in-memory computer by itself, by providing inputs using a spe-
cific sequence of voltage stimuli over time. We herein aim at demonstrating basic computing features,
and given the long colloid system timescales, we used a custom 8×8 digit dataset to demonstrate basic
in-memory computing functionality. To further verify its dynamical properties, we demonstrate FF com-
putation using the concept of Reservoir Computing (RC), a paradigm that takes advantage from sys-
tem dynamics (spontaneous or excited from external sources) for advanced information processing. Re-
versibility, fading memory, nonlinearity of electrical response and structural stochasticity are usually con-
sidered as prerequisites for any physical implementation of RC concepts [16], and most solid-state mem-
ristors fulfil these requirements [17].

2 Experimental Set-Up and Hysteresis

We aim at demonstrating the basic computing properties of a FF system, in particular using a set-up
featuring two terminals, in view of an extension with a larger number of ports, distributed over the en-
tire volume of FF reservoir, as detailed in Sec. 5. Our experimental setup shown in Fig. 1A comprises a
FF sample (the reservoir) connected to a two-port Vector Network Analyzer (VNA), a DC bias genera-
tor (where the negative terminal is internally connected to ground) and two bias tee circuits to decouple
RF and DC signals. Both the DC bias generator and the VNA are connected to a Personal Computer
to implement measurement scripts (Supplementary Sec. S2), that is, applying a DC voltage across the
reservoir and reading the impedance through its S-parameters, that can be always converted to impedances
as a function of frequency. As shown in Fig. 1B, the FF is stimulated as follows: a quasi-DC voltage VP
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(bipolar) is applied to the system to program/write it, and its internal status (read) is acquired in RF
mode using the magnitude impedance parameters. Since the observed S-parameters and consequently
impedance magnitude variations are small (Supplementary Sec. S3), the sum of the numerical impedance
values over all scanned frequencies ZC

xy can be used profitably as an indicator of the internal status of
the reservoir (see the formulas in the figure). This way the S-parameters are collapsed into a single num-
ber for each measurement point, reducing data volume 100 folds, and enabling specialised electronics
to read the liquid status without requiring any accurate sub-systems (see Sec. S15). Consequently, each
reading measurement is an ensemble of four real numbers ZC

11, Z
C
12, Z

C
21 and ZC

22, all of those being a func-
tion of time t, e.g., for port one, ZC

11 ≡ ZC
11(t). Such approach is chosen to test the robustness of liquid

state programming, coding and computing: in fact the algebraic sum of all impedance values does not
represent any optimal choice of a specific working point that might provide higher rejection/amplification
/signal-to-noise ratio (see e.g., Fig. S1 @ 1 GHz).
Hysteresis, a fingerprint of memristance [18], is a necessary condition for neuromorphic computation [19].
Fig. 1C shows hysteresis loops obtained performing a voltage sweep from -3.8 V to 3.8 V with steps of
0.1 V each lasting 1 s, repeated for 50 times. At the beginning of the test (t= 0 s) we started with VP = -
0.85 V and impedance values were ZC

11(0) = 14312 Ω, ZC
12(0) = 2320 Ω, ZC

21(0) = 2060 Ω and ZC
22(0) = 11795 Ω.

The pinched hysteresis of ZC
11 shrinks for positive VP as the number of iterations increases, even with

such zero average excitation. The hysteresis of ZC
22 shrinks throughout the whole VP range while for ZC

12

and ZC
21 we observe the opposite phenomenon. On the one hand, the results indicate that assuming a

given DC stimulus, its effect on the impedance variation is not constant and varies over time. On the
other hand, this feature indicates a long-term adjustment of the material towards an equilibrium condi-
tion, that can be interpreted as the feature of memorizing the previous DC bias history. Furthermore,
due to fluidity of the material, this memory will be naturally fading, which is another important prereq-
uisite for an efficient and universal RC system [20].

3 Information Storage

The liquid can be used to store information in the form of a particular impedance evolution at a given
port. To pose a parallelism with biological neurons we can refer to a long-term plasticity feature. Fig. 2A
shows the stimulus scheme used to demonstrate storage capacity for N information values – in this spe-
cific test N = 16. The test comprises repeated Reset, Write and Hold phases, where Reset implements
a control loop on ZC

11 to reset its value to ZC∗
11 . The results in Fig. 2B show that ZC∗

11 is correctly set for
each iteration, and notwithstanding impedance control is implemented at port one, ZC

22 evolves towards
well defined impedance values, that are a function of the applied pulse duration TP (i). Interestingly, the
ZC
22 values do not reset at the beginning of each Write phase. The small variation of ∆ZC

22 values and
the associated uniform distribution parameters during Hold of Fig. 2C, suggest that the colloid can be
used as a high resolution short-term memory. In general, as TP (i) can be controlled with the power of
continuum, analogue information storage can be implemented and information can be stored even for a
longer duration (Supplementary Sec. S4). In general, losses depend on the working point selected along
the hysteresis loop, and information storage can be achieved with pulses featuring proportional ampli-
tude. However, results in Sec. S4 show that given the complex dynamics of the FF, pulse-width pro-
gramming can be considered more effective assuming a maximum voltage of 3.3 V, compliant with stan-
dard electronic components.

4 Computing

4.1 Pattern Classification

By extending the memory stimulus scheme of Fig. 2A, we could demonstrate in-memory digit classifi-
cation. To this end, we prepared a dataset consisting of the ten digits 0–9, in 8× 8 matrices of pixels
(Supplementary Sec. S5), that we have transformed into a linear time sequence of stimuli (serialized) as

3

 15214095, ja, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adm

a.202211406 by C
ochraneItalia, W

iley O
nline L

ibrary on [22/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



A
cc
ep
te
d
A
rt
ic
le

This article is protected by copyright. All rights reserved.

4.2 Physical Reservoir Computing

shown in the scheme of Fig. 3A. Data serialization has been demonstrated to be an efficient approach
towards neuromorphic data processing with very minimal computational resources [e.g. single artificial
neurons [21, 22]]. Each pixel, besides its value 0–1 that can be mapped to a voltage level VP , can be at-
tributed a weight in terms of pulse duration wi and, in general, an offset (in terms of additive voltage).
It is therefore possible to build up sequences with higher or lower sensitivity to a particular digit or se-
lectively filter particular pixel values. The resulting weight matrix given an expected digit, can be com-
puted by simply assigning longer duration to the expected black pixels of that given digit, so that the
liquid dynamics is exacerbated. In turn, when digits are ”submitted” to the sample, in presence of the
expected digit (the one that was predefined), impedance variation is usually higher, if compared to other
non-expected digits (non-predefined). Such property is used for digit matching. Here, we do not bias the
colloid in the condition of having a pinched hysteresis, so to obtain a monotonic decrease of impedance
during the tests, and therefore enable a direct comparison of the final value for all digits after the appli-
cation of the sequences. By assuming instead that the system is in the conditions of a pinched hystere-
sis, the FF can progressively adapt to implement a learning mechanism by providing a particular non-
zero offset weighting (Supplementary Sec. S6).
Fig. 3B shows the stimulus scheme of the pattern classification test, which exploits in-memory comput-
ing features. Similarly to the memorisation experiments, here we apply a reset control sequence on ZC

22,
towards the impedance set-point ZC

22 = 14338 Ω, using an initial Charge phase at 10 V. Each pixel is as-
sociated to a -3.3 V or 0 V voltage (black or white) for a given weight duration, with zero offset. After
verifying differentiation (Supplementary Sec. S5), we provide the weighted sequences, so that the pulse
duration of each expected black pixel is longer when compared to the others. We apply sequentially all
serialised pixel matrices from 0 to 9, using all the weighted sequences for each digit. Fig. 3C–E show the
measurement results assuming 4.5 and 0.5 s weights (black and white, respectively), for three sample dig-
its, 1, 4 and 7. Results show that with this in-memory computing scheme ZC

22 decreases more consider-
ably in case the weighted sequence matches the predefined digit. The final match can then be achieved
by applying a simple threshold on the ZC

22 value, which depends on the digit to be detected, or alterna-
tively, by indexing the digit that leads to the lowest impedance. This particular scheme fails for 3 which
is a subset of 8 (Fig. 3F), thus leading to an overall 90% accuracy. As an effect of long-term plasticity,
we have observed also that if the above test is repeated for days without interruption, the impedance dy-
namics shrinks, irrespective of the digit (see Sec. S7). We have qualitatively observed through experi-
ments, however, that the behaviour of the liquid is reversible and that impedance dynamics can be re-
stored. By progressively injecting small quantities of FF in the reservoir, and therefore dynamically chang-
ing its volume, we demonstrated that the FF can be successfully scaled to run in-memory computing at
different volumes. This can be done by setting different initial impedance conditions depending on the
volume of liquid (supplementary Sec. S13). This result implicitly demonstrates that the liquid computer
is scalable. We have observed also that the responsiveness of the material increases for larger tempera-
tures, and initial impedance conditions need to be adapted also in this context.

4.2 Physical Reservoir Computing

Similarly to solid-state memristors (see also detailed comparison in Sec. S8), to further demonstrate the
computation capability of the FF, we have implemented PRC using an ad-hoc readout layer. The FF ex-
hibits chaotic nature (resulting inter alia from Brownian motions as well as from the surfactant molecules
featuring electrical polarizability), and within its deterministic features, it presents a strong sensitivity to
initial electrical conditions (Supplementary Sec. S9), while it can provide both fading memory and long-
term plasticity (for instance see the plots in Fig. S3). RC is typically implemented taking advantage of
a physical reservoir short-term memory [23]. However, within the time frame of a digit classification,
our findings show that the dynamics of the FF tend to shrink in the long-term if a trivial reset condi-
tion is used (Supplementary Sec. S7). Moreover, besides sensitivity to initial conditions, the FF exhibits
chaotic non-equilibrium at repeated impedance sets (Supplementary Sec. S10). As a further confirmation
of its complex dynamics, repeated programming sets and resets lead to high variability, without dedi-
cated countermeasures. While a trivial initial impedance control is necessary to achieve repeatability of
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in-memory computing, over the long term it is not enough to avoid dynamics shrinking, and other coun-
termeasures must be put in place, as here described. Such features can make PRC unfeasible and it is
thus necessary to avoid changes in dynamical regime during both training and inference. To mitigate
these variations and solve this issue, we have designed a particular ’reset’ sequence that maintains the
dynamical features of the material consistent. It features the application of a high voltage towards two
impedance points, that are higher and lower compared to the initial impedance ZC∗

22 used to run active
computation, respectively. Fig. 4A shows the measurement scheme and the reset sequence. In our tests
ZC

22|LOW = 16350 Ω, ZC
22|HIGH = 16450 Ω and ZC∗

22 = 16400 Ω.
We used the same in-memory computing scheme given in Fig. 3A and constant weighting to serialise the
64 pixels of the digit matrices (each pixel lasts 2 s, with -3.3 V for 1 and 0 V for 0) and we have trained
a Neural Network (NN) layer to classify four digits 0–3 using a training dataset comprising 200 digits,
(50×4, rationale and dataset presented in Sec. S11). The NN comprises a first block which normalises in
parallel the 64 impedance values in the range 0–1 to get rid of residual dynamical variations due to the
FF chaotic nature. The input layer is made of a 64 Dense model, followed by a Batch Normalization

block (that helps back-propagation convergence), another 14 elements Dense model, and finally a single
Dense neuron. Inference is achieved in real-time using the trained NN on new measurement data from
the FF consisting of 64 impedance values ZC

22. Fig. 4B shows the confusion map associated to the detec-
tion of 300 new digits, after detecting the four digits with the pre-trained NN, achieving an accuracy of
90.6%.

5 Discussion, Conclusions and Future Prospects

In this work, we have demonstrated a neuromorphic device that operates solely on the basis of liquid
state matter, showing complex switching dynamics, memory features and capable of advanced neuro-
morphic information processing. Few former literature reports on liquid state memristors exist, most of
which are liquid because of the use of liquid InGa alloy as electrodes [24] or ionic liquid as a medium, in
which metallic conductive filaments are formed [25]. For all formerly reported devices, however, only ba-
sic learning functionality has been demonstrated, e.g. hysteresis loop and on/off switching. Literature
reports indicate the possibility of scaling liquid state memristors down to nanoscale (30 nm size of the
liquid well) providing that non-volatile solvents are used [25].
In this work, we have demonstrated scaling capability with a large volume of liquid of a complex nanopar-
ticle colloidal suspension. The choice of magnetite is driven by its sustainable features: it is an abundant
and cheap material, its synthesis is rather simple and does not require toxic ions such as cobalt or nickel,
its eventual spill-out will not cause severe environmental pollution. Further, the choice of a water-based
suspension goes too in the direction of a more sustainable commercialisation of future liquid cybernetic
systems. Having dealt with several formulations, some of them hydrocarbon-based, we understood that
this particular formulation, featuring polarisability of the surfactant molecules in a water environment,
of course stabilises the nanoparticles in the solvent and allows for a three-dimensional reconfiguration of
molecules and nanoparticles in a volume triggered by an electric field. This is like featuring an adaptive,
electrically programmable routing of the equivalent network: an electric stimulus changes the coordina-
tion degree and the routing, as much as a pH variation was shown to induce ferroelectricity (i.e. the fea-
ture of producing electrical polarisation via oriented domains) in an otherwise neutral liquid [26].
The main advantage of the current device resides in its fluidity and unique amorphous nature. In prin-
ciple, it provides robustness against impulsive mechanical shock, electrical shock and ionising radiation
as well, while solid state devices (especially on glass/silicon substrates) are much more sensitive. Crys-
talline lattices can be severely damaged by electrical breakdown, mechanical cleavage and also radiation-
induced recrystallisation or spallation, phenomena that are not likely to influence a liquid. In the case
of a water-based FF, excessive voltage applied across the reservoir may only result in water electrolysis,
which, due to gas evolution, may disturb the liquid computer only temporarily, with a full functional re-
covery once the voltage surge is removed. The results reported in Sec. S12 represent a first demonstra-
tion of such advanced self-healing properties. Other two important features resulting from the fluidity of
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this colloid system are the non-necessity of a forming procedure (which instead limits the performance
of solid filamentary memristors) and memory volatility. This, although disqualifies a FF as a permanent
memory, opens nevertheless a pathway to reservoir computing. Usually memristive system are read with
DC pulses, which might disturb stored information, as every DC interaction with a memristor may re-
sult is a Faradaic process of filament growth/disintegration, or charge trapping at the interface. On the
other hand, an RF readout approach, so far that has been never applied, provides milder readout condi-
tions and causes less interference to the sample.
In view of the reported features, we can conclude that further investigations using multiple ports and
holonomic concepts [8] and further engineering steps towards a complex computer are possible, based on
the spatial arrangement of the ports (see Sec. S15). While the generation of DC voltage (at high impedance)
can be easily implemented using low-complexity circuit solutions, read-out custom electronic circuits
can take advantage of the demonstrated cumulative ultra-wide band impedance variation of the colloid,
without necessarily requiring accurate frequency synthesis. The power required by the FF to run the in-
memory computing scheme of Fig. 3 is below 200µW (supplementary Sec. S14). Although the FF sys-
tem cannot reach the power consumption of in-memory solid-state spiking neural networks architectures
of nW orders [27], the obtained value demonstrates low-power operation, compatible with those of mi-
crocontrollers. The energy consumption of in-memory computing, however, strongly depends on the type
of processing executed. Moreover, solid-state devices are deeply miniaturised and their operation can re-
gard few atomic layers of matter, while here the volume of the colloid is macroscopic, thus pertaining a
nanoparticle system (roughly 1018 particles) rather than to a single nanoparticle domain, leaving room
for important improvements. Given the demonstrated scaling capabilities, it is definitely interesting to
investigate operation using micrometric volumes of liquid containing a small number of nanoparticles.
In conclusion, we have demonstrated the first ever evidence of a FF in-memory computing system. A
FF can be considered as both a device and a system and implement complex calculations both with cus-
tom in-memory computing schemes, and PRC, thus widening its spectrum of features. Besides extending
the possibilities of already existing applications of FFs, these findings make solutions featuring unprece-
dented plasticity, fault-tolerance and resilience towards extreme environments a plausible reality, thanks
to their amorphous nature.

6 Methods

Conditions : All measurements are performed in an electronic laboratory environment at room tempera-
ture (unless otherwise specified) and they are executed mostly at night time to avoid possible vibrations
that may occur in the laboratory during normal working hours.

Ferrofluid : We have used an EMG601P ferrofluid, FerroTec, Lot Number U021920A [28]. The quantity
of liquid used is 5 ml, that has been released in the vial using a pipette (unless otherwise indicated).

Vial : The vial is made of an inert Acrylonitrile Butadiene Styrene (ABS) material while the electri-
cal contacts, directly in contact with the liquid, are based on feed-lines of gold plated RF connectors,
therefore not contributing to any chemical reaction. The vial (3 cm diameter) has been prepared to host
RF SMA connectors (Wurth Elektronik, 1.6 mm straight PCB, Manufacturer number 60314202124525)
feed lines. The ground pins of the connectors have been cut to expose only the feed line of the connec-
tor. The vial has been drilled to host symmetrically the two feed lines. Finally, the connectors have been
threaded in the drilled surface of the vial, and fixed in place using a rubber band and hot glue. In order
not to let the liquid evaporate, the vial needs to be closed using the supplied cap.
We have specifically chosen not to implement RF shielding on the vial to avoid undercut propagation
modes, therefore permitting the observation of the phenomena without constraints.

Vector Network Analyzer : A PicoVNA 106 (300 kHz–6 GHz), Pico Technology, UK, has been used to
read out the status of the material, using its built-in Dynamic Link Libraries (DLL) under Microsoft
Windows 7. In our experiments, the RF power used to perform the frequency sweep by the VNA is -
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3 dBm, and we have not observed any significant impact of such a signal on the internal status evolution
of the liquid. The number of measurement points was 201.

Bias Tee: The two bias tees used are commercial TCBT-14+, Mini Circuits (10 MHz–10 GHz), that
have been soldered on two custom PCBs designed to be mounted on the RF mini enclosure RF-ENCL-
MINI-NF-01, Gequipment.

DC Generator : We have implemented the DC generator using a Micropython Board V1.1, connected,
through its two available DAC converters to an evaluation board of a Maxim OpAmp with an internal
charge pump (MAX 44267 EVAL KIT) to generate, starting from a single 12 V supply, a ± 10 V DC sig-
nal using both INAP and INAM terminals. The DACs of the Micropython board have been set through
the internal firmware to a high current drive. The Micropython board implements a Virtual COM Port
(VCP) interface to the Personal Computer so that the measurement program can set the output DC
voltage on-demand by asynchronously sending commands to the module. The DC generator accepts an
external power supply (GBC 34.0106.10, 18.5 W, 0.8 A at 12 V) that generates the 12 V supply required
for the OpAmp to operate.

Measurement Software: The measurement software runs on a Windows 7 Virtual Machine, installed on
a CentOS 7 control domain. Both VNA and DC Generator are connected to the PC using USB cables.
To reproduce the measurements presented in the manuscript, it is sufficient to write a program that co-
ordinates both VNA and DC generator to read out the S-parameters from the liquid and set the DC
bias point. In this work, however, we have designed a specific Python scripting language that executes
and compiles specific experiment files.

Impedance Parameters Calculation: To calculate the impedance parameters starting from the S-parameters
we have used the following equations (1–4),

Z11 =
(1 + S11)(1 − S22) + S21S12

∆S

Z0, (1)

Z12 =
2S12

∆S

Z0, (2)

Z21 =
2S21

∆S

Z0, (3)

Z22 =
(1 − S11)(1 + S22) + S21S12

∆S

Z0, (4)

where ∆S = (1 − S11)(1 − S22) − S21S12. The above equations output are the impedance complex num-
bers values over frequency, from which magnitude values can be extracted. In our measurement system,
these calculations are computed during the S-parameters measurements, but they can be calculated of-
fline. We have assumed Z0 = 50 Ω. In our tests, we have not eliminated the contribution of the vial, and
we have considered its full impedance contribution including the colloid.

DC Characterization and Controlled Temperature Tests : The DC characterization have been obtained
using a Keithley 2635A – Picoamperometer and Nanovoltmeter. The temperature tests have been run
by using a Binder MK53 climatic chamber, by staging both vial, RF cables and bias tee inside. The re-
mainder part of the setup was kept outside the chamber.

PRC Readout Neural Network : The neural network has been implemented in
tensorflow. Training is achieved using 50 sequences of digits 0–3 obtained using the same measurement
conditions of the other tests (see Sec. S11). The optimizer used for training is Adam and all the layers
have a sigmoid activation function. The ’reset’ sequence is not considered in the training, and only the
64 impedance values resulting from serialization are used. During the real-time inference the measure-
ment system streams the data once all the pixels are serialized, i.e. when a single digit iteration is fin-
ished, though the User Datagram Protocol (UDP) over an Ethernet physical layer. The inference is run
on a PC where the trained model is loaded and the UDP packets are received from the network.
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Measurements Processing and Graphs : All the results of this manuscript (except from the PicoVNA 106
that comes with its proprietary DLL and the vial that has been rendered using PTC Creo), have been
obtained using open source software, that is Python, Inkscape
(https://inkscape.org), Xfig (http://mcj.sourceforge.net),
TexMaker (https://www.xm1math.net/texmaker/) and Gimp
(https://www.gimp.org). The files generated by the measurement system have been processed, collated, and
organized for plotting and visualization using custom
matplotlib Python utilities.

Statistical Analysis : The impedance measurements reported here are acquired by collecting a massive
amount of data for over six months, and for the reservoir computing dataset we have run the statistical
analyses (mean, standard deviation and histograms) reported in Sec. S11, obtained using Python. The
data in the confusion map of Fig. 4B has been obtained by post-processing measurements results using a
custom Python script.

Supporting Information
Supporting Information is available from the Wiley Online Library or from the author.
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Figure 1: A Experimental set-up. B Measurement concept and relevant parameters. The colloid is programmed using
a quasi-DC voltage and its internal status is read through its distributed impedance values ZC

11, Z
C
12, Z

C
21 and ZC

22, that
correspond to the sum of the impedance values obtained throughout the measurement bandwidth of the VNA (10MHz–
6GHz). C Hysteresis loops as a function of experiment elapsed time obtained from an initial impedance multi-point (com-
prising Z11, Z12, Z21 and Z22), recorded by applying a -3.8V–3.8V voltage sweep.
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T  = 4s
0

N =16

Figure 2: A Long-term memory stimulus scheme and B results obtained by applying a positive pulse to the material of
amplitude 3.3V with different duration TP (i), and by restoring the initial impedance value ZC∗

11 =14338Ω for each test
using a closed control loop. C Variation of ZC

22 and corresponding mean and variance during the Hold phase for all infor-
mation values.

11

 15214095, ja, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adm

a.202211406 by C
ochraneItalia, W

iley O
nline L

ibrary on [22/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



A
cc
ep
te
d
A
rt
ic
le

This article is protected by copyright. All rights reserved.

REFERENCES

Figure 3: A Weighting used for in-memory digit filtering, based on a simple elongation of the expected pixels pulses. Each
digit is serialized from bottom-left to top-right, sequentially line by line. B Stimulus scheme for classification, with re-
set control on ZC

22 after each serialized digit (exemplified here for 1 weighting). C, D, E Measured impedance variation
for all digits for three examples of weighted sequences, 1, 4 and 7. Weighting a particular digit leads to a lowering of its
impedance ZC

22 compared to the others (orange paths). F Final ZC
22 for all weighting sequences. Classification for digit 3

fails due to overlapping with 8.
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Figure 4: A Stimulus scheme used for both training and inference during PRC tests with parallelised outputs for the read-
out NN layer (each one identifying the effect of a pixel value), detail on the NN layer and conceptual liquid reservoir. B
Confusion map of a real-time classification test of the digits 0 to 3 using the trained NN.
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