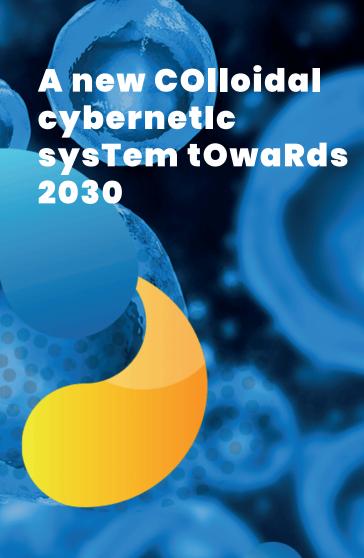
CONSORTIUM

CONTACT US

in /company/cogitor-project

Alessandro Chiolerio, Prof., Dr.


Alessandro.Chiolerio@iit.it

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 964388

THE PROJECT

represents a novel COGITOR approach to cybernetics, proposing the study of Colloidal (liquid) (CCS), a Cybernetic Systems multifunctional liquid-based platform that we have designed to be capable of pressure sensing (i) computing and data storage (ii), energy harvesting (iii) and integrating fully custom electronics (iv). A CCS provides operation in extreme environments by definition. having distributed architecture (homogeneous liquid plus random architecture), being network fault-tolerant featuring and self-healing capabilities. Within COGITOR in 48 months the consortium will provide a platform where liquid electronics efforts can converge from all over the world, making European research the point of reference for this big step forward. COGITOR measurable and specific objectives are: i) creating an impedance liquid state pressure sensor with spatial and temporal resolution; producing holonomic reversible memory written/erased electrically and read Microwave by tomographic Impedance Spectroscopy: electrical operation will be used to implement learning (both sequential and concurrent) and calculation, where the system acts as a many-input Boolean circuit; iii) harvesting energy from a thermal gradient artificially induced by IR

radiation upon the prototype; iv) integration and testing of the final CCS prototype, testing self-healing and fault tolerance capabilities, as well as assessing interference, also under EE conditions varying T, p and B. The engineering applications that we plan to exploit will be part of the intellectual property of a spin-off company. The consortium is well-balanced with cutting edge Research Organizations across EU (IIT - Italy, UWE - UK, EMPA -Suisse) and companies (PC Germany, PNO – Italy) that will closely collaborate to develop and really transfer knowledge and innovations into products and related services.

IMPACT

The project will create a liquid robot. It will "feel" the external environment like our skin, being sensible to pressure and temperature. It will be able to heal autonomously when wounded. A basic liquid memory and a rudimentary logic will be implemented. It will produce a small amount of energy to "be alive".

RESULTS

The first experiments have explored so far the capabilities of colloidal suspensions at liquid state to undergo learning and memorization. media Several have been characterized. including ZnO. polyaniline nanorods and ferrofluids, and setting of internal states is obtained by applying an external stimulus, such as a steady state potential, while resistance impedance are monitored. We also have explored particular colloidal compositions able to develop a thermal gradient by radiation absorption, that will be used to scavenge energy in the outer part of the liquid robot. A vessel for extreme environment testing is under design.

BENEFITS

The benefits of a base science research are for all the people. Inspiring new forms of art, of understanding, of conceiving a robot are among the expected benefits. The consortium will boost the European position in soft robotics and grant supremacy in liquid robotics.